[Review] Explainability as statistical inference

ICML 23 Poster accepted

Chanmoo Park

December 12, 2023

Seoul National University

Notation

- $\mathcal{X} = \prod_{d=1}^{D} \mathcal{X}_i$ be a D-dimensional feature space : Image
- $\cdot \,\, \mathcal{Y}$ be the target space : Label
- Consider two random variables, $\mathbf{X} = (X_1, \dots, X_D)$ and $Y \in \mathcal{Y}$, following the true data generating distribution $p_{\text{data}}(x, y)$.
- We have N i.i.d realizations, $x^1,\ldots,x^N\in\mathcal{X}$ and labels $y^1,\ldots,y^N\in\mathcal{Y}$
- $\cdot\,$ As a statistician, we mostly like to figure out

 $p_{\text{data}} (y \mid x),$

which is called "Statistical Inference".

LEX : Latent Variable as Explanation

• In the standard predictive model, we usually approximate $p_{\text{data}}(y \mid x)$ using the parametric predictive model $p_{\theta}(y \mid x) = \Phi(y \mid f_{\theta}(x))$, maximizing

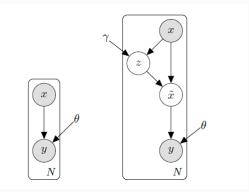
$$\max_{\theta} \mathcal{L}(\theta) = \max_{\theta} \sum_{n=1}^{N} \log p_{\theta} \left(y_n \mid x_n \right)$$

where $(\Phi(. \mid \eta))_{\eta \in H_1}$ is a parametric family.

 \cdot In this article, the latent variable Z is induced and maximize

$$\max_{\theta,\gamma} \mathcal{L}(\theta,\gamma) = \max_{\theta,\gamma} \sum_{n=1}^{N} \log \left[\mathbb{E}_{z \sim p_{\gamma}(. | x_n)} p_{\theta} \left(y_n \mid x_n, z \right) \right]$$

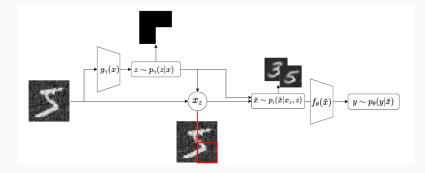
LEX : Latent Variable as Explanation



• What is Z?

 $Z \in \{0,1\}^D$ corresponds to a subset of selected features. If $Z_d = 1$, then feature d is used by the predictor, and otherwise is not used by the predictor. We can call it as a "Mask" for the image.

LEX : Latent Variable as Explanation



- Neural net $g_{\gamma}: \mathcal{X} \to [0,1]^D$ is called "selector" with weight $\gamma \in \Gamma$
- $p_{\gamma}(z \mid x)$ is parametrized by g_{γ} (e.g. $p_{\gamma}(z \mid x) = \prod_{d=1}^{D} \mathcal{B}(z_d \mid g_{\gamma}(x)_d))$
- + \tilde{X} is "masked" and "imputed" vector.

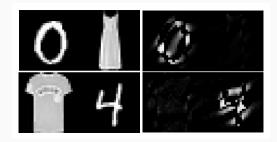
• Considering LEX framework, maximum likelihood problem is

$$\max_{\theta,\gamma} \sum_{n=1}^{N} \left[\log \mathbb{E}_{z \sim p_{\gamma}(.|x_n)} \mathbb{E}_{\tilde{x} \sim p_{\iota}(.|x_n,z)} p_{\theta} \left(y_n \mid \tilde{x} \right) - \lambda \mathbf{R}(z) \right].$$

Model	Sampling (p_{γ}) & Regularization (R)	Imputation (p_{ι})	Training regime
L2X [1]	Subset Sampling & Implicit	0 imputation	Surrogate PostHoc
Invase [4]	Bernoulli & L1	0 imputation	Surrogate PostHoc
REAL-X [2]	Bernoulli & L1	Surrogate 0 imputation	Fixed θ In-Situ / Surrogate PostHoc
Rationale Selection [3]	Bernoulli, L1 & continuity regularization	Removed or imputed with padding value	Free In-Situ

Experiments : SP MNIST

- Switching Panels MNIST
 - Synthetic data using MNIST and FashionMNIST
 - Randomly sample a single image both from two datasets.
 - Arrange them in random order.
 - Target is the label of MNIST (number).



Experiments : CelebA

- CelebA dataset
 - Target : Smile or not

