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Contribution

® Distance between private model via output smoothing and optimal model, and
the difference between their fairness levels are bounded by O(,/p/n).
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® X : Feature space in R

Y : Finite set of labels

® S C X : Set of sensitive attributes

® D : Distribution over X x Y

D = {(x1,y1), -+, (xn, ¥n) : i.i.d data from D

H : function space of h: X x Y — R.

H(x) : argmax, ¢y, h(x, y)

p(h,x,y) = h(x,y) — max,, h(x,y") : Margin of a model h for an
example-label pair (x, y)
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Fairness

® Focus on Group Fairness.

® As in Maheshwari & Perrot, when data can be partitioned into K disjoint
groups by D1, -+, Dx (ex : D(y—1,s=1), Dy—0,s=1), D(y=1,5=0), D(y=0,5=0)),
fairness definitions can be written as

K
Fi(h,D)=C{+ > G P(H(X) =Y | Dv)
k’=1

where the C,f/’s are group specific values independent of h.



Fairness

® Example : Equalized Odds (Hardt et al., 2016)
- LetV(y,s) e Y xS, Y ={0,1}
- Fyu(h, D) = B(H(X) = Y|Y = y.§ = 5) — B(H(X) = Y|Y = y).

- C(c')v’s) + Z C((y s) (H(X) Y ‘ Y = y',S = Sl)

(v',s")€Y xS
with when y =1
0
Cys=0
C(ys =1-P(S=s|Y=y)

Vs’;és7C(yS):—P( S=s|Y=y)

(v.s)

v £yvs es, ) —o

when y =0, C( )—Oforallses

(v.s)



Fairness

® Use the mean of the absolute fairness level of each group:
Fair(h, D) = Z\Fk (h, D)|

which is 0 when h is fair and positive when it is unfair.
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Definition(Dwork,2006)

® Let AP : (X x V)" — H be a randomized algorithm.

® Define AP is (¢, §)-differentially private if, for all neighboring datasets
D,D’ € (X x V)" and all subsets of hypotheses H' C H,

P (A7 (D) e H') < exp()P (A" (D) e H') +5
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Output perturbation

® Define h; as

1 n
hy =argmin=">» £(h;x,si,Yi
B & (o)

® Qutput perturbation make the non-private solution h; be a private estimate by
the Gaussian mechanism :

hpriv = Tu (h* +N (O’z]lp))
where 7y is the projection on H.

® |t is known that given € > 0 and 6 < 1, hP™ is (e, §)-differentially private as
long as

o? > 2A%log(1.25/5) /€
where A = 2A/un
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® pis Lipschitz-continuous

|p(h,x,y) —p(h/,X,y)| < LX«,V Hh_ hl”’}{’

where Ly, < +00 depends on the example (x, y) and ||-||,, is Eucildean and
Hisconvex.

® |oss function £: H x X x Y — R is A-Lipschitz and p-strongly convex with
respect to h.
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Theorem
Let hP" be the vector released by output perturbation with noise

0? = 8A%log(1.25/6)/u*n*e®, and 0 < ¢ < 1, then with probability at least 1 — ¢,

‘ 2 < 32pA? log(1.25/6) log(2/¢)

priv._ px
h h 2 un?e?

15



Theorem
With probability at least 1 — (,

‘Fk (h””"’ , D) R (h, D)‘

xk (h™", D) LA\/32plog(1.25/5) log(2/¢)
jne ’

where b € {h"™, h*} and xi(h, D) = 325 _, ]ck’

E(“ﬁ%( Dur).
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Experiment

—— Theoretical Upper Bound Bound with Empirical Distance - Improved Bound Knowing both Models

~—— Non-private Model Fairness #0 Private Models Fairness
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Figure 1: Experiment Result

® Private models mean (1,1/n%)-DP model learned by output perturbation.
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