Bidirectional Encoder Representations From Transformers (BERT)

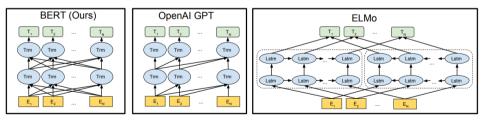
September 6, 2024

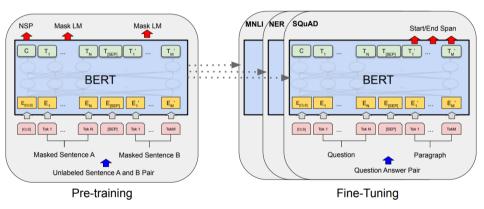
Seoul National University

Young rae Cho

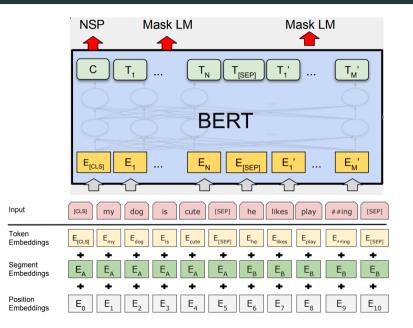
Background

Hey ELMo, what's the embedding of the word "stick"?

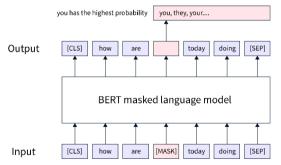

There are multiple possible embeddings! Use it in a sentence.


Oh, okay. Here: "Let's stick to improvisation in this skit"

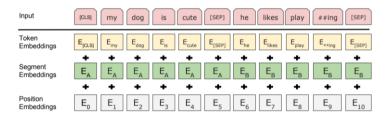
Oh in that case, the embedding is: -0.02, -0.16, 0.12, -0.1etc BERT uses a bidirectional Transformer (encoder)


OpenAI GPT uses a left-to-right Transformer (decoder)

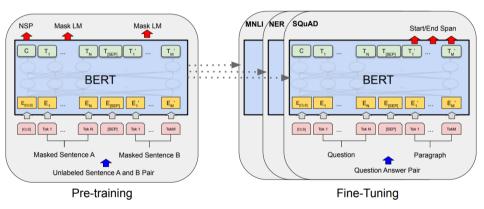
ELMo uses the concatenation of independently trained Left-to-right and right-to-left LSTMs.



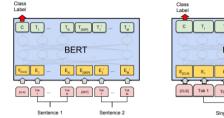
Embedding

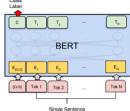

Pre-training BERT

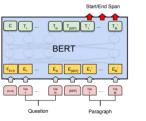
Task #1: Masked LM

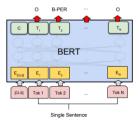


- 80% of the time: Replace the word with the [MASK] token, e.g., my dog is hairy → my dog is [MASK]
- 10% of the time: Replace the word with a random word, e.g., my dog is hairy \rightarrow my dog is apple
- 10% of the time: Keep the word unchanged, e.g., my dog is hairy → my dog is hairy. The purpose of this is to bias the representation towards the actual observed word.


Task #2: Next Sentence Prediction (NSP)




Fine-Tuning exemples


(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Effect of Pre-training Tasks

Effect of Model Size

	Dev Set							
Tasks	MNLI-m (Acc)	QNLI (Acc)	MRPC (Acc)	SST-2 (Acc)	SQuAD (F1)			
BERTBASE	84.4	88.4	86.7	92.7	88.5			
No NSP	83.9	84.9	86.5	92.6	87.9			
LTR & No NSP + BiLSTM	82.1 82.1	84.3 84.1	77.5 75.7	92.1 91.6	77.8 84.9			

Table 5: Ablation over the pre-training tasks using the BERT_{BASE} architecture. "No NSP" is trained without the next sentence prediction task. "LTR & No NSP" is trained as a left-to-right LM without the next sentence prediction, like OpenAI GPT. "+ BiLSTM" adds a randomly initialized BiLSTM on top of the "LTR + No NSP" model during fine-tuning.

	Hyperparams				Dev Set Accuracy			
	#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2	
	3	768	12	5.84	77.9	79.8	88.4	
	6	768	3	5.24	80.6	82.2	90.7	
	6	768	12	4.68	81.9	84.8	91.3	
se	12	768	12	3.99	84.4	86.7	92.9	
	12	1024	16	3.54	85.7	86.9	93.3	
ge	24	1024	16	3.23	86.6	87.8	93.7	

Table 6: Ablation over BERT model size. #L = the number of layers; #H = hidden size; #A = number of attention heads. "LM (ppl)" is the masked LM perplexity of held-out training data.

BERT vs GPT

BERT

Only Encoder

Bidirectional LM

Fine - tunning

GPT

Only Decoder

Left to Right LM

No Fine - tunning

Pre-training and Fine tuning model

Bidirectional model

State-of-the-art (SOTA)