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Introduction

a source image agallery composed of many target images

e Face identification tasks ask whether a given person in a source image appears
within a gallery composed of many target images (one-to-many comparision).

e Face recognition models exhibit bias, such as gender and race.

Conventional wisdom dictates that model biases arise from biased training data.

e A fundamental question: Does model bias arise from the architecture and
hyperparameters?
— Neural Architecture Search (NAS) x Hyperparameter Optimization(HPO)



Neural Architecture Search (NAS) & Hyperparameter Optimization (HPO)

e NAS aims at automating the design of network architectures.
e HPO refers to the automated search for optimal hyperparameters.
(learning rate, batch size, dropout, loss function, optimizer, and architectural choices, etc.)

e Limitaions of existing studies in face recognition systems

e The training hyperparameters for the architectures are fixed in NAS techniques.
o None of the methods can be applied for a joint architecture and hyperparameter search.
e None of them have been used to optimize fairness.



Are Architectures and
Hyperparameters Important for
Fairness?



Evaluation metric

e Error (representation error): for a given image, whether the closest image in
feature space is not of the same person based on /> distance.

e Rank: how many images of a different identity are closer to the image in feature
space.

= Rank(image) = 0 iff Error(image) = 0; Rank(image) > 0 iff Error(image) = 1.

e Rank disparity:
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Result
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Figure 2: (Left) CelebA (Right) VGGFace2. Error-Rank Disparity Pareto front of the architectures
with lowest error (< 0.3). Models in the lower left corner are better. The Pareto front is denoted
with a dashed line. Other points are archi and hyperpara combinations which are not
Pareto-optimal.

Optimizing for error does not always optimize for fairness.

Different architectures have different fairness properties.

DPN architecture has the lowest error and is Pareto-optimal on both datasets.

There are differences between the two datasets at the most extreme low errors.

For VGGFace2, there are 10 models with Error < 0.05; CelebA has 3 such models.
Models with low error also have low rank disparity on VGGFace2 but not for CelebA.
The Pareto-optimal models differ across datasets.

Different architectures exhibit different Pareto-optimal hyperparameters.



Neural Architecture Search for Bias
Mitigation




Overview of methodology
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Search Space Design

Index  Operation Definition
0 BnConvlxl Batch Normalization — Convolution with 1x1 kernel
1 Conv 1x1Bn Convolution with 1x1 kernel — Batch Normalization
2 Convlxl Convolution with 1x1 kernel
3 BnConv3x3 Batch Normalization — Convolution with 3 x 3 kernel
4 Conv 3 x 3Bn  Convolution with 3 x 3 kernel — Batch Normalization
5 Conv 3 x 3 Convolution with 3 x 3 kernel
6 BnConv5x5 Batch Normalization — Convolution with 5 x 5 kernel
7 Conv 5 x 5Bn  Convolution with 5 x 5 kernel — Batch Normalization
8 Conv5x5 Convolution with 5 x 5 kernel
Table 1: Operation choices (Architecture).
Hyperparameter Choices
Architecture Head/Loss MagFace, ArcFace, CosFace
Optimizer Type Adam, AdamW, SGD

Learning rate (conditional)  Adam/AdamW — [le — 4, 1e — 2],
SGD — [0.09,0.8]

Table 2: Searchable hyperparameter choices.



Results

Table 1: Comparison of bias mitigation techniques where lhe SMAC models were found wuh our
NAS+HPO bias mitigation technique and the other three tech dard in facial

Flipped [9], Angular [76], and SensitiveNets [110]. Items in bold are Pareto-optimal. The values
show (Error;Rank Disparity). Other metrics are reported in Appendix C.6 and Table 8.

‘Trained on VGGFace2 mmed on CelebA
Model Baseline  Flipped  Angular _SensitiveNets | Model Baseline ipped  Angular  SensitiveNets
SMAC_301 (3.66:0.23) (4950.18) (4.14:0.25) (6200 SMAC_000  (3252.18) 1510,&03) (3.45,2.28)
DPN 3.56:0.2 5370121 . X SMAC_010 (12.27;5.
ReXNet 5.73,045) SMAC_680 (12424.50) (3.
Swin 15 75:0: 44) ArcFace (13.56:2.70)  (9.90:5.60)

Table 2: We transfer the evaluallon of top performing models on VGGFace2 and CelebA onto six
other face LFW [53], CFP_FF [100], CFP_FP [100], AgeDB [77],
CALFW [128], CPLPW [127]. The novel architectures found with our bias mitigation strategy
significantly outperform other models in terms of accuracy. Refer Table 9 for the complete results.

Architecture (trained on VGGFace2) LFW CFP_FF CFP_FP AgeDB CALFW CPLFW

Rexnet_200 82.60 80.91 65.51 59.18 68.23 62.15
DPN_SGD 93.0 91.81 78.96 71.87 7827 7297
DPN_AdamW 78.66  77.17 64.35 61.32 64.78 60.30
SMAC_301 96.63  95.10 86.63 79.97 86.07 81.43
Architecture (trained on CelebA) LFW CFP_FF CFP_FP AgeDB CALFW CPLFW
DPN_CosFace 87.78 90.73 69.97 65.55 75.50 62.77
DPN_MagFace 91.13 92.16 70.58 68.17 76.98 60.80
SMAC_000 9498  95.60 74.24 80.23 84.73 64.22
SMAC_010 9430  94.63 73.83 80.37 84.73 65.48

SMAC_680 94.16  95.68 72.67 79.88 84.78 63.96
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