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Introduction



Introduction

• Face identification tasks ask whether a given person in a source image appears

within a gallery composed of many target images (one-to-many comparision).

• Face recognition models exhibit bias, such as gender and race.

• Conventional wisdom dictates that model biases arise from biased training data.

• A fundamental question: Does model bias arise from the architecture and

hyperparameters?

=⇒ Neural Architecture Search (NAS) × Hyperparameter Optimization(HPO)
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Neural Architecture Search (NAS) & Hyperparameter Optimization (HPO)

• NAS aims at automating the design of network architectures.

• HPO refers to the automated search for optimal hyperparameters.

(learning rate, batch size, dropout, loss function, optimizer, and architectural choices, etc.)

• Limitaions of existing studies in face recognition systems

• The training hyperparameters for the architectures are fixed in NAS techniques.

• None of the methods can be applied for a joint architecture and hyperparameter search.

• None of them have been used to optimize fairness.
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Are Architectures and
Hyperparameters Important for
Fairness?



Evaluation metric

• Error (representation error): for a given image, whether the closest image in

feature space is not of the same person based on ℓ2 distance.

• Rank: how many images of a different identity are closer to the image in feature
space.

=⇒ Rank(image) = 0 iff Error(image) = 0;Rank(image) > 0 iff Error(image) = 1.
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Result

• Optimizing for error does not always optimize for fairness.

• Different architectures have different fairness properties.

• DPN architecture has the lowest error and is Pareto-optimal on both datasets.

• There are differences between the two datasets at the most extreme low errors.

• For VGGFace2, there are 10 models with Error < 0.05; CelebA has 3 such models.

• Models with low error also have low rank disparity on VGGFace2 but not for CelebA.

• The Pareto-optimal models differ across datasets.

• Different architectures exhibit different Pareto-optimal hyperparameters.
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Neural Architecture Search for Bias
Mitigation



Overview of methodology
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Search Space Design

Index Operation Definition

0 BnConv1x1 Batch Normalization → Convolution with 1x1 kernel

1 Conv 1x1Bn Convolution with 1x1 kernel → Batch Normalization

2 Conv1x1 Convolution with 1x1 kernel

3 BnConv3x3 Batch Normalization → Convolution with 3× 3 kernel

4 Conv 3× 3Bn Convolution with 3× 3 kernel → Batch Normalization

5 Conv 3× 3 Convolution with 3× 3 kernel

6 BnConv5x5 Batch Normalization → Convolution with 5× 5 kernel

7 Conv 5× 5Bn Convolution with 5× 5 kernel → Batch Normalization

8 Conv5x5 Convolution with 5× 5 kernel

Table 1: Operation choices (Architecture).

Hyperparameter Choices

Architecture Head/Loss MagFace, ArcFace, CosFace

Optimizer Type Adam, AdamW, SGD

Learning rate (conditional) Adam/AdamW → [1e − 4, 1e − 2],

SGD → [0.09, 0.8]

Table 2: Searchable hyperparameter choices.
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Results
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