Inducing Causal Structure for Interpretable Neural Networks (ICML 2022)

SeongSik Choi

January 2, 2024

Seoul National University

Notation

 ${\mathcal V}$: a set of variables

For variable $V \in \mathcal{V}$, Val(V): a set of values

 PA_V : a set of parents

 F_V : a structural equation that sets the value of V based on the setting of its parents.

 V_{ln} : the set of variables with no parents

 $V_{\rm Out}$: those with no children.

A structural causal model $\mathcal{M}=(\mathcal{V}, \mathit{PA}, \mathit{Val}, \mathit{F})$ can represent both symbolic computations and neural networks.

Notation(GetVals)

We define $\operatorname{GetVals}(\mathcal{M}, \operatorname{inp}, V) \in \operatorname{Val}(V)$: the particular values that V takes on when the model \mathcal{M} processes inp.

For example, \mathcal{M} could correspond to structure and weight parameters in a neural network and V could correspond to nodes in a neural network.

For a set of variables V and a setting for those variables $v \in Val(V)$, we define $\mathcal{M}_{V \leftarrow v}$ to be the causal model identical to \mathcal{M} , except that the structural equations for V are set to constant values v.

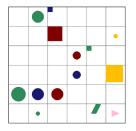
Notation(Interchange Intervention)

```
INTINV(\mathcal{M}, base, source, \mathbf{V}) \stackrel{\text{def}}{=} GetVals (\mathcal{M}_{V\leftarrow \text{GetVals}(\mathcal{M}, \text{ source}, V)}, base, \mathbf{V}_{\text{Out}})
```

In short, the interchange intervention provides the output of the model $\mathcal M$ for the input base, except the variables $\mathbf V$ are set to the values they would have if source were the input.

Example : Navigation and Language (ReaSCAN)

The goal is to predict an action sequence for the agent to reach the referred target and operate on it given a command and a grid world.



 $I_{\text{world}}(\text{World})$: Figure

 $I_{com}(Command)$: "walk the cylinder"

O(Action sequence): 'turn left', 'turn left', 'walk'

Training

For each variable V in $\mathcal{C}_{\mathsf{ReaSCAN}}$ aligned with neurons \mathbf{N}_V in $\mathcal{N}^{\theta}_{\mathsf{CNN-LSTM}}$, we optimize for $\mathcal{N}^{\theta}_{\mathsf{CNN-LSTM}}$ implementing the marginalized submodel $\mathcal{C}^{V}_{\mathsf{ReaSCAN}}$:

$$\sum_{b,s \in \mathsf{ReaSCAN}} \mathsf{CE}_{\mathsf{Action}} \; (\mathsf{INTINV} \left(\mathcal{N}^{\theta}_{\mathsf{CNN-LSTM}} \;, \mathbf{b}, \mathbf{s}, \mathbf{N}_{V} \right),$$

$$\mathsf{INTINV} \left(\mathcal{C}^{V}_{\mathsf{Rea-SCAN}} \;, \mathbf{b}, \mathbf{s}, V \right),$$

where $\mathsf{CE}_{\mathsf{Action}}$ is the cross-entropy loss over each action token prediction over the complete action sequence.

Correspondence between V and N_V

The correspondence between variable V and node N_V is as shown in the following diagram.

