LLMs are Zero-Shot Reasoners

Kim Choeun August 21, 2024

Seoul National University

1. Introduction

- 2. Zero-shot Chain of Thought
- 3. Experiment
- 4. Conclusion

Introduction

- A LM is a model that looks to estimate the probability distribution over text.
- The success of LLMs is often attributed to (in-context) few-shot or zero-shot learning.
- In this paradigm, instead of adapting pre-trained LMs to downstream tasks via objective engineering, downstream tasks are reformulated to look more like those solved during the original LM training with the help of a textual prompt.
- For example, if we choose the prompt "English: I missed the bus today. French: ", an LM may be able to fill in the blank with a French translation.

CoT prompting

- Multi-step arithmetic and logical reasoning benchmarks have particularly challenged the scaling laws of LLMs.
- Chain of Thought (CoT) prompting proposed a simple solution by modifying the answers in few-shot examples to step-by-step answers.

(a) Few-shot	(b) Few-shot-CoT		
Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now? A: The answer is 11.	Q: Roger has 5 tennis balls. He buys 2 more cans of tennis' balls. Each can has 3 tennis balls. How many tennis balls does he have now? A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. S + 6 = 11. The answer is 11.		
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there? A:	Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there? A:		
(Output) The answer is 8. X	(Output) The juggler can juggle 16 balls. Half of the balls are golf balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are blue. So there are 8 / 2 = 4 blue golf balls. The answer is 4. \checkmark		
(c) Zero-shot	(d) Zero-shot-CoT (Ours)		
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there? A: The answer (arabic numerals) is	Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there? A: Let's think step by step.		
(Output) 8 X	(Output) There are 16 balls in total. Half of the balls are golf balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue colf balls.		

Zero-shot Chain of Thought

Two stage prompting

- Proposed Zero-shot-CoT by simply adding *Let's think step by step*, or a similar text before the answer.
- Extract step-by-step reasoning.

- 1. Reasoning Extraction Q: [X].A: [T] where [X] is an input slot and [T] is an slot for hand-crafted trigger sentence.
- 2. Answer Extraction [X'] [Z] [A] where [X'] is a 1st prompt, [Z] is generated sentence and [A] is a trigger sentence to extract answer.

Experiment

- Tasks and Datasets : four categories of reasoning tasks; arithmetic, commonsense, symbolic, and other logical reasoning tasks.
- **Models** : 17 models in total. Instruct GPT3, original GPT3, PaLM, etc.
- **Baselines** : Zero-shot prompting, Few-shot prompting, Few-shot CoT prompting. Used greedy decoding across all the methods.
- **Answer cleansing** : after the model outputs a text by answer extraction, pick up only the part of the answer text that first satisfies the answer format.

Zero-shot-CoT vs. Zero-shot

	Arithmetic					
	SingleEq	AddSub	MultiArith	GSM8K	AQUA	SVAMP
zero-shot	74.6/ 78.7	72.2/77.0	17.7/22.7	10.4/12.5	22.4/22.4	58.8/58.7
zero-shot-cot	78.0/78.7	69.6/74.7	78.7/79.3	40.7/40.5	33.5/31.9	62.1/63.7
	Common Sense		Other Reasoning Tasks		Symbolic Reasoning	
	Common SenseQA	Strategy QA	Date Understand	Shuffled Objects	Last Letter (4 words)	Coin Flip (4 times)
zero-shot	68.8/72.6	12.7/ 54.3	49.3/33.6	31.3/29.7	0.2/-	12.8/53.8
zero-shot-cot	64.6/64.0	54.8 /52.3	67.5/61.8	52.4/52.9	57.6/-	91.4/87.8

- Zero-shot-CoT achieved score gains on arithmetic, symbolic reasoning and other reasoning tasks.
- In commonsense reasoning tasks, zero-shot CoT does not provide performance gains.
- However, many generated chain of thought themselves are surprisingly logically correct or only contains human-understandable mistakes.

Results

	MultiArith	GSM8K
Zero-Shot	17.7	10.4
Few-Shot (2 samples)	33.7	15.6
Few-Shot (8 samples)	33.8	15.6
Zero-Shot-CoT	78.7	40.7
Few-Shot-CoT (2 samples)	84.8	41.3
Few-Shot-CoT (4 samples : First) (*1)	89.2	-
Few-Shot-CoT (4 samples : Second) (*1)	90.5	-
Few-Shot-CoT (8 samples)	93.0	48.7
Zero-Plus-Few-Shot-CoT (8 samples) (*2)	92.8	51.5
Finetuned GPT-3 175B [Wei et al., 2022]	-	33
Finetuned GPT-3 175B + verifier [Wei et al., 2022]	-	55

The performance drastically increases with chain of thought reasoning, as the model size gets bigger, for Original/Instruct GPT-3 and PaLM.

	Zero-shot	Few-shot-CoT [†]	Zero-shot-CoT	Few-shot-CoT
AQUA-RAT	22.4	$\frac{31.9}{27.0}$	33.5	39.0
MultiArith	17.7		78.7	88.2

- The table shows the performance of few-shot-CoT when using examples from different datsets: CommonsenseQA to AQUA-RAT and CommonsenseQA to MultiArith.
- The chain of thought examples from different domains but with the same answer format provide substantial performance gain over Zero-shot (to AQUA-RAT).
- For both cases the results are worse than Zero-shot-CoT, affirming the importance of task-specific sample engineering in Few-shot-CoT.

Conclusion

- Proposed a single zero-shot prompt that elicits chain of thought from large language models across a variety of reasoning tasks, in contrast to the few-shot approach that requires hand-crafting few-shot examples per task.
- The method not only is the minimalist and strongest zero-shot baseline for difficult multi-step system-2 reasoning tasks.