[Review] Neural Machine Translation by jointly learning to align and translate ICLR 2015

Hankyo Jeong

August 8, 2024

Seoul National University

- Machine translation
 - statistical MT >> neural MT
- Encoder Decoder

- encode a source sentence into a fixed-length vector from which a decoder generates a translation. >> bottleneck

- Automatically (soft)search source sentence
 - What are relevant to prediction to target word?
 - = soft alignment
 - = attention

Introduction

- Neural Machine Translation
- (basic) Encoder Decoder
- Issue
 - fixed-vector representation >> bottleneck
 - necessary information of source sentence must be compressed
 - long input sentence: low performance
- (proposed) Encoder Decoder: learns to align and translation jointly.
 each time the model generates a word in a translation, it (soft)searches for a set of positions in a source sentence where the most relevant information is concentrated.

- Then predicts the target word based on the context vectors associated with these source positions and previously generated target words.

- encodes the input sentences into a sequence of vectors and choose a subset of these vectors adaptively while decoding the translation.

Background: NEURAL MACHINE TRANSLATION

• Translation: $argmax_y P(\mathbf{y}|\mathbf{x})$

RNN Encoder-Decoder

- $\mathbf{x} = (x_1, ..., x_{Tx})$ sequence of vectors (input)

- $c = q(\{h_1, ..., h_{T\times}\})$: fixed-length representation generated from the sequence of the hidden states.

- $h_t = f(x_t, h_{t-1})$: $h_t \in \mathbb{R}^n$ is a hidden state at time t, f and q are some nonlinear functions, for instance 'Sutskever et al. (2014)' used f as LSTM and $q(\{h_1, ..., h_{T_X}\} = h_{T_X})$

- Decoder: predict next word given the context vector and previously predicted words.

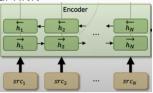
$$p(y) = \prod_{t=1}^{T} p(y_t | \{y_1, \dots, y_{t-1}, c\})$$

$$p(y_t | \{y_1, \dots, y_{t-1}, c\} = g(y_{t-1}, s_t, c)$$

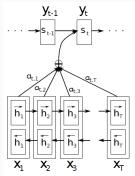
where g is a nonlinear, potentially multi-layered, function that outputs the prob of y_t and s_t is the hidden state of RNN.

LEARNING TO ALIGN AND TRANSLATE

• Encoder: Bidirectional RNN



• Decoder: searches through a source sentences



ENCODER: BIDIRECTIONAL RNN FOR ANNOTATING SEQUENCES

- RNN: reads input sequence in order from x_1 to x_{Tx} (forward)
- BiRNN: forward $\text{RNN}(\overrightarrow{f})$ + backward $\text{RNN}(\overleftarrow{f})$
 - forward RNN:

calculates a sequence of forward hidden states $((\vec{h_1}, ..., \vec{h_{T_x}}))$. - bakeward RNN:

calculates a sequence of backward hidden states $((\overleftarrow{h_1},...,\overrightarrow{h_{T_x}})$.

Obtain annotation for each word x_j by concatenating the forward hidden state and backward hidden state. h_j = [h_j^T, h_j^T]^T
 In this way the annotation h_j contains the summaries of both the preceding words and the following words.

• Each conditional probability defined as:

$$p(y_i|\{y_1,...,y_{i-1},\mathbf{x})=g(y_{i-1},s_i,c_i)$$

where s_i is an RNN hidden state for time *i*, computed by

$$s_i = f(s_{i-1}, y_{i-1}, c_i)$$

conditioned on a distinct context vector c_i for each target word y_i

• c_i depends on a sequence of annotations $(h_1, ..., h_{T_X})$ computed

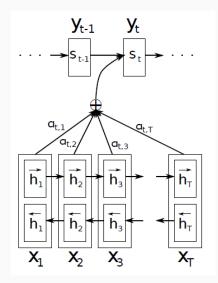
$$c_i = \sum_{j=1}^{I_x} \alpha_{ij} h_j$$

The weight α_{ij} of each annotation h_j is computed by

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$

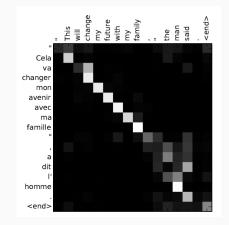
where $e_{ij} = a(s_{i-1}, h_j)$ is an alignment model which scores how well the inputs around position j and the output at position i match.

DECODER: GENERAL DESCRIPTION

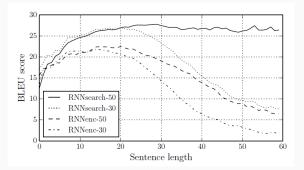


- English-to-French translation
- Train two types of models
 - Conventional RNN encoder-decoder vs Proposed RNNsearch
- encoder and decoder of the RNN have 1000 hidden units each, single maxout hidden layer for each target word.
- SGD, Adadelta

RESULTS



Each cell: attention score α_{ij} , balck: 0, white: 1



proposed model is robust than basic RNN model