2022 Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction

1. Causality: The Basic Framework

  – 발표자: 최성식(발표자료)

2. A Brief History of the Potential Outcomes Approach to Causal inference

  – 발표자: 이경선(발표자료)

3. A Classification of Assignment Mechanisms

  – 발표자: 박진원(발표자료)

4. A Taxonomy of Classical Randomized Experiments

  – 발표자: 공인성(발표자료)

5. Fisher’s Exact P-Values for Completely Randomized Experiments

  – 발표자: 정연호(발표자료)

6. Neyman’s Repeated Sampling Approach to Completely Randomized Experiments

  – 발표자: 박찬무(발표자료)

7. Regression methods for completely randomized experiments

  – 발표자: 김건웅(발표자료)

8. Model-Based Inference for Completely Randomized Experiments

  – 발표자: 양동윤(발표자료)

9. Stratified Randomized Experiments

  – 발표자: 박석훈(발표자료)

10. Pairwise Randomized Experiments

  – 발표자: 이종진(발표자료)

11. Case Study: An Experimental Evaluation of a Labor Market Program

  – 발표자: 이지후(발표자료)

12. Unconfounded Treatment Assignment

  -발표자: 정휘창(발표자료)

13. Estimating the Propensity Score

  -발표자: 박유하(발표자료)

14. Assessing Overlap in Covariate Distributions

  -발표자: 이경선(발표자료)

15. Matching to Improve Balance in Covariate Distributions

  -발표자: 양동윤(발표자료)

16. Trimming to Improve Balance in Covariate Distributions

  -발표자: 박유하(발표자료)

17. Subclassification on the Propensity Score

  -발표자: 정연호(발표자료) (보충자료)

18. Matching Estimators

  -발표자: 박찬무(발표자료)

19. A General Method for Estimating Sampling Variances for Standard Estimators for Average Causal Effects

  -발표자: 이지후(발표자료)

20. Inference for General Causal Estimands

  -발표자: 공인성(발표자료)

21. Assessing Unconfoundedness

  -발표자: 정휘창(발표자료)

22. Sensitivity Analysis and Bounds

  -발표자: 최성식(발표자료)

23. Instrumental Variables Analysis of Randomized Experiments with One-Sided Noncompliance

  -발표자: 박진원(발표자료)

24. Instrumental Variables Analysis of Randomized Experiments with Two-Sided Noncompliance

  -발표자: 이종진(발표자료)

25. Model-based analysis in instrumental variable settings: randomized experiments with two-sided noncompliance

   -발표자: 김건웅(발표자료)

2021 Causal Inference What if

1. A definition of causal effect, 2. Randomized experiments, 3. Observational studies

  -발표자: 김건웅(발표자료)

4. Effect modification

  -발표자: 최성식(발표자료)

5. Interaction

  -발표자: 양동윤(발표자료)

6. Graphical representation of causal effects

  -발표자: 공인성(발표자료)

7. Confounding

  -발표자: 박진원(발표자료)

8. Selection bias

  -발표자: 박유하(발표자료)

9. Measurement bias

  -발표자: 이지후(발표자료)

10. Random variability

  -발표자: 정휘창(발표자료)

11. Why model?

  -발표자: 이종진(발표자료)

12. IP weighting and marginal structures models

  -발표자: 박석훈(발표자료)

13. Standarization and the parametric g-formula

  -발표자: 양동윤(발표자료)

14. G-estimation of structural nested models

  -발표자: 정휘창(발표자료)

15. Outcome regression and propensity scores

  -발표자: 이종진(발표자료)

16. Instrumental variable estimation

  -발표자: 박석훈(발표자료)

17. Causal Survival Analysis

  -발표자: 박유하(발표자료)

18. Variable selection for causal inference

  -발표자: 이지후(발표자료)

19. Time-varying treatments

  -발표자: 최성식(발표자료)

2020 Bayesian Data Analysis

1. Probability and Inference

  -발표자: 임재영(발표자료) 정지원(발표자료)

2. Single-parameter models

  -발표자: 이경민, 박지원(발표자료)

3. Multiparameter models

  -발표자: 양동윤(발표자료)

4. Asymptotics and connections to non-Bayesian approaches

  -발표자: 김건웅(발표자료)

5. Hierarchical models

  -발표자: 공인성(발표자료)

6. Model checking

  -발표자: 박석훈(발표자료)

10. Introduction to Bayesian computation

   -발표자: 이지후(발표자료)

11. Basic of Markov chain simulation

  -발표자: 이종진(발표자료)

12. Computationally efficient Markov chain simulation

  -발표자: 최성식(발표자료)

13. Modal and distributional approximations

  -발표자: 정휘창(발표자료)

2020 Causal Inference in Statistics

1. Preliminaries: Statistical and Causal Models

2. Graphical Models and Their Applications

  -발표자: 김건웅(발표자료)

3. The Effects of Interventions

  -발표자: 공인성(발표자료)

4. Counterfactuals and Their Applications

  -발표자: 이종진(발표자료)

2018 Mathematical Foundations of Infinite-Dimensional Statistical Models

1. Nonparametric Statistical Models

  -발표자: 김성현(발표자료)

2. Gaussian Processes

  2.1 Definitions, Separability, 0-1 Law, Concentration

    -발표자: 이상엽(발표자료)

  2.2 Isoperimetric Inequality with Applications to Concentration

    -발표자: 이종진(발표자료)

  2.3 The Metric Entropy Bound for Suprema of Sub-Gaussian Processes

    -발표자: 백규승(발표자료)

  2.4 Anderson’s Lemma, Comparison and Sudakov’s Lower Bound

    -발표자: 김보영(발표자료)

  2.5 The Log-Sobolev Inequality and Further Concentration

  2.6 Reproducing Kernel Hilbert Spaces

    2.6.1
      -발표자: 온일상(발표자료)
    2.6.2~3
      -발표자: 최용찬(발표자료)

  2.7 Asymptotics for Extremes of Stationary Gaussian Processes

    -발표자: 김사라(발표자료)

3. Empirical Processes

  3.1 Definitions, Overview and Some Background Inequalities

    3.1.1~2
      -발표자: 서지인(발표자료)
    3.1.3~4 
      -발표자: 권용찬(발표자료)            

  3.2 Rademacher Processes
    -발표자: 김성현(발표자료)

  3.3 The Entropy Method and Talagrand’s Inequality

    3.3.1~3
      -발표자: 이상엽(발표자료)
    3.3.4~5
      -발표자: 이종진(발표자료)

  3.4 First Applications of Talagrand’s Inequality
    -발표자: 백규승(발표자료)

  3.5 Metric Entropy Bounds for Suprema of Empirical Processes
    3.5.1
      -발표자: 김보영(발표자료
    3.5.2
      -발표자: 온일상(발표자료)

3.6 Vapnik-Červonenkis Classes of Sets and Functions
  3.6.1
    -발표자: 최용찬(발표자료)
  3.6.2~3
    -발표자: 김사라(발표자료)

  3.7 Limit Theorems for Empirical Processes
    3.7.1~2
      -발표자: 서지인(발표자료)
    3.7.3~4
      -발표자: 최용찬(발표자료)
    3.7.5~6
      -발표자: 백규승(발표자료)

4. Function Spaces and Approximation Theory

  4.1 Definitions and Basic Approximation Theory
    -발표자: 이종진(발표자료)

  4.2 Orthonormal Wavelet Bases
    -발표자: 김사라(발표자료)   

4.3 Besov Spaces
  4.3.1~3
    -발표자: 이상엽(발표자료)
  4.3.4~7
    -발표자: 김성현(발표자료)

  4.4 Gaussian and Empirical Processes in Besov Spaces
    -발표자: 백규승(발표자료)

  5.1 Kernel and Projection-Type Estimators
    -발표자: 공인성(발표자료)

2018 Support Vector Machines

2. Loss Functions and Their Risks

  -발표자: 서지인(발표자료)

3. Surrogate Loss Functions

  -발표자: 김사라(발표자료)

2017 Neural Network Learning: Theoretical Foundations

2. The Pattern Classification Problem

– 발표자: 최성식(발표자료)

3. The Growth Function and VC-Dimension

– 발표자: 이경선(발표자료)

4. General Upper Bounds on Sample Complexity

– 발표자: 박진원(발표자료)

5. General Lower Bounds on Sample Complexity

– 발표자: 공인성(발표자료)

6. The VC-Dimension of Linear Threshold Networks

– 발표자: 정연호(발표자료)

7. Bounding the VC-Dimension using Geometric Techniques

– 발표자: 박찬무(발표자료)

8. Vapnik-Chervonenkis Dimension Bounds for Neural Networks

– 발표자: 김건웅(발표자료)

9. Classification with Real-Valued Functions

– 발표자: 양동윤(발표자료)

10. Covering Numbers and Uniform Convergence

– 발표자: 박석훈(발표자료)

11. The Pseudo-Dimension and Fat-Shattering Dimension

– 발표자: 이종진(발표자료)

12. Bounding Covering Numbers with Dimensions

13. The Sample Complexity of Classication Learning

  -발표자: 온일상(발표자료)

15. Model Selection

  -발표자: 김지수(발표자료)

16. Learning Classes of Real Functions

17. Uniform Convergence Results for Real Function Classes

  -발표자: 정구환(발표자료)

18. Bounding Covering Numbers

19. The Sample Complexity of Learning Real Function Classes

  -발표자: 최세민(발표자료추가발표자료)

20. Convex Classes

21. Other Learning Problems

  -발표자: 김동하(발표자료)

22. Efficient Learning

23. Learning as Optimization

  -발표자: 김영근(발표자료)

24. The Boolean Perceptron

25. Hardness Results for Feed-Forward Networks

26. Constructive Learning Algorithms for Two-Layer Networks

  -발표자: 권용찬(발표자료)